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A B S T R A C T   

With increasing environmental awareness and energy requirement, sustainable manufacturing has attracted 
growing attention. Meanwhile, there is a high level of uncertainty in practical processing procedure, particularly 
in flexible manufacturing systems. This study addresses the multi-objective flexible job shop scheduling problem 
with fuzzy processing time (MOFFJSP) to minimize the makespan and the total workload simultaneously. A 
mixed integer liner programming model is presented and a hybrid self-adaptive multi-objective evolutionary 
algorithm based on decomposition (HPEA) is proposed to handle this problem. HPEA has the following features: 
(i) two problem-specific initial rules considering triangular fuzzy number are presented for hybrid initialization 
to generate diverse solutions; (ii) five problem-specific local search methods are incorporated to enhance the 
exploitation; (iii) an effective solution selection method based on Tchebycheff decomposition strategy is utilized 
to balance the convergence and diversity; and (iv) a parameter selection strategy is proposed to improve the 
quality of non-dominated solutions. To verify the effectiveness of HPEA, it is compared against other well-known 
multi-objective optimization algorithms. The results demonstrate that HPEA outperforms these five state-of-the- 
art multi-objective optimization algorithms in solving MOFFJSP.   

1. Introduction 

With the development of economic globalization, traditional 
manufacturing is quite difficult to satisfy the flexible requirement of the 
market. Whereas, because of lower management risk and higher pro
duction profit, flexible manufacturing has become a common modern 
production (Lu, Gao, Yi, & Li, 2020). In flexible manufacturing, all tasks 
are assigned to a set of machines to optimize one or more objectives. 
Meanwhile, on account of various reasons, fuzziness and uncertainty 
will inevitably appear when processing jobs. So it is necessary to fuzz the 
processing time. And fuzzy manufacturing has attracted researchers’ 
widespread concern because of its complexity. Consequently, fuzzy 
scheduling of flexible shop problems has been studied in recent years. In 
most existing studies, only one objective (i.e., makespan) on fuzzy shop 
scheduling problems is considered. Nevertheless, in the practical 
manufacturing environment, there are always more than oneobjectives 
that need to be optimized. Therefore, the research along multi-objective 
fuzzy job shop scheduling problem seems more significant for some 
manufacturing enterprises. 

Fuzzy flexible job shop scheduling problem (FFJSP) (Lei, 2010) is a 

combination of flexible job shop scheduling problem (FJSP) (Brucker & 
Schlie, 1990) and fuzzy job shop scheduling problem (fJSP) (Abdullah & 
Abdolrazzagh-Nezhad, 2014). It is very complex and hard to solve and 
has been proved as an NP-hard problem (Pavlov, Misura, Melnikov, & 
Mukha, 2019). Thus, many intelligent optimization algorithms (Gong, 
Liao, Mi, Wang, & Guo, 2021; Dai, Gong, & Gu, 2021) have been pro
posed to address such scheduling problems, such as genetic algorithm 
(Sakawa & Mori, 1999), differential evolution (Gao, Wang, & Pedrycz, 
2020), ant colony optimization (Jia, Yan, Leung, Li, & Chen, 2019), 
teaching learning-based optimization (Xu, Wang, Wang, & Liu, 2015), 
and harmony search (Gao, Suganthan, Pan, & Tasgetiren, 2015b). 

This work investigates on multi-objective fuzzy flexible job shop 
scheduling problem (MOFFJSP). To the best of our knowledge, 
MOFFJSP has not yet been studied so far. Most previous studies focus on 
optimizing fuzzy makespan, including decomposition-integration ge
netic algorithm (DIGA) (Lei, 2010) for FFJSP, coevolutionary genetic 
(CGA) (Lei, 2012) for FFJSP, hybrid biogeography-based optimization 
(HBBO) (Lin, 2015) for FFJSP, backtracking search based hyper- 
heuristic (BS-HH) (Lin, 2019) for FFJSP, hybrid cooperative coevolu
tion algorithm (hCEA)(Sun, Lin, Gen, & Li, 2019) for FFJSP and 
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weighted distance-based approximation (WBDA) (Dorfeshan, 
Tavakkoli-Moghaddam, Mousavi, & Vahedi-Nouri, 2020) for FFJSP. As 
for MOFFJSP, Palacios (Gonzalez-Rodriguez, Vela, & Puente, 2017) 
applied NSGA-II and dominance-based tabu search (DBTS) to minimize 
fuzzy makespan and maximize robustness. An improved NSGA-II with 
critical path and hamming distance for diversity was proposed by Wang 
(Chun, Na, Zhicheng, & Yan, 2017) for MOFFJSP. Wang (Wang, Tian, Ji, 
& Wang, 2017) combined NSGA-II and MA to solve robust MOFFJSP 
efficiently. Yu (Yuguang, Fan, & Feng, 2019) applied a multi-objective 
artificial bee colony algorithm (MoABC) with basic VNS for MOFFJSP. 
An NSGA-II algorithm hybridizing local simulated annealing operators 
(NIISA) was proposed by Wang (Wang, Xie, Xia, & Zhang, 2019), which 
is better than algorithms. Gonźlçlez (Gonzalez-Rodriguez, Puente, Pal
acios, & Vela, 2020) developed a novel NSGA-II and use heuristics to 
reduce energy consumption named (MO-HREC) for MOFFJSP with en
ergy constrain. Li (Li, Liu, Li, & Zheng, 2020) proposed a type-2 fuzzy set 
and used an improved artificial immune system algorithm (IAIS) to solve 
MOFFJSP with low energy consumption which is competitive to other 
algorithms. Inspired by the above-mentioned algorithms, there are some 
problems that need to be solved. For MOFFJSP, meta-heuristics can get 
good convergence by excessively adopting local search, but it will sac
rifice the diversity of the population. NSGA-II is the most common al
gorithm in recent studies on MOFFJSP. But the crowding distance 
strategy seems not a good diversity strategy for discrete problems. After 
executing a local search, the non-dominated solution may gather in one 
point, which may get stuck at local optima. So a good diversity strategy 
should be designed to. Many classical initial methods have been pro
posed and how to combine their advantages to get a high-quality pop
ulation is worth studying. Local search is a critical step in discrete 
scheduling problems and how to organize several problem-specific Local 
search strategies is worth being considered. According to our experi
mental results, we found when the algorithm selects different parame
ters, the best parameter for each FFJSP instance was different. Referring 
to no free lunch theorems (Wolpert & Macready, 1997), no parameter 
works best on all instances. Thus, it is essential to make the algorithm 
automatically choose parameters according to their performances. 

Motivated by the above problems, this paper proposed a hybrid 
MOEA/D with parameter adaption strategy (HPEA) to solve multi- 
objective FFJSP (MOFFJSP) when minimizing fuzzy makespan and 
fuzzy total machine workload simultaneously. In HPEA, weight vectors 
are used to make solutions spread widely and ensure diversity among 
the candidate solutions. Tchebycheff function is applied to guide the 
solution converge along weight vectors to balance the convergence and 
diversity. Then a discrete crossover method, which has a larger step and 
can exchange the gene more sufficiently, is applied to generate a new 
solution. Next, an initial method combining three initial rules (MIX3) is 
designed to get a population with high quality and diversity. Moreover, 
a variable neighborhood search (VNS) adopting five local search 
methods is performed to accelerate its convergence. Finally, a parameter 

adaption strategy (PAS) is developed to make the algorithm automati
cally select parameters according to their performance. To verify the 
performance of HPEA, three benchmarks containing 23 FFJSP instances 
are chosen. In addition, extensive experiments have been carried out in 
this paper, including parameter calibration in HPEA, the efficiency of 
each component of HPEA, comparison with some advanced algorithms, 
the diversity of non-dominated solution set in contrast to other algo
rithms, and the convergence speed compared with other algorithms. 

The main contributions of this paper go in four directions.  

(1) An initial strategy is designed to provide a population with high 
quality and diversity, which combines the advantage of three 
strategies.  

(2) A variable neighborhood search is designed, which adopted five 
local search methods. It provides guidance to organize local 
searches to get good results.s  

(3) A parameter adaption strategy is dseveloped to ensursse that 
proposed algorithm dynamically chooses parameters according 
to their performances.  

(4) The performance of HPEA is executed on 23 FFJSP instances with 
different features. Experimental results show that HPEA is supe
rior to state-of-art algorithms under the condition of faster 
convergence. 

The rest of this paper is organized as follows. Section 2 describes the 
concept of fuzzy set, fuzzy operators, and MOEA/D. In Section 3, we 
introduce the modeling of multi-objective FFJSP (MOFFJSP). Our 
approach HPEA is reported in Section 4 in detail, including initial 
strategy MIX3, VNS, discrete crossover method, and PSA. Numerical test 
experiments on HPEA are shown in Section 5 and the conclusions are 
summarized in Section 6 and some topics of future research are 
provided. 

2. Related work 

2.1. Previous works 

Table 1 gives the review of literature about MOFFJSP. (Sakawa & 
Kubota, 2000) first applied GA to solve it and GA is suitable for it. (Chun 
et al., 2017) used insert decoding method and critical path to efficiently 
reduce the makespan. (Wang et al., 2017) embed VNS into NSGA-II, 
which improved the convergence. (Palacios et al., 2017) designed a 
dominance-based tabu search method, which selected non-improve 
neighbors to escape from local optima. (Saracoglu & Suer, 2018) used 
three-phase to simulate manufacturing progress. (Wang et al., 2019) 
developed simulated annealing as local searching for NSGA-II, which 
improved the convergence. (Yuguang et al., 2019) proposed multi- 
objective artificial bee colony algorithm (MoABC) and embedded VNS 
adopting three local search methods. VNS obtained good searching 

Table 1 
Literature review.  

Researchers fuzzy number objective algorithm 

(Sakawa & Kubota, 2000) TFN Cmax and duedates GA 
(Chun et al., 2017) TFN Cmax and TWL NSGA-II 
(Wang et al., 2017) TFN Cmax and AI NSGA-II 
(Palacios et al., 2017) TFN Cmax and robustness MoEA 
(Saracoglu & Suer, 2018) duedate TFT and Cmax GA 
(Wang et al., 2019) TFN Cmax and robustness NSGA-II 
(Yuguang et al., 2019) TFN Cmax,AI and TWL ABC 
(Gonzalez-Rodriguez et al., 2020) TFN TWT and TEC NSGA-II 
(Li et al., 2020) IT2FS Cmax and TEC AIS 
(Pan et al., 2021) TFN Cmax and TEC bi-population EA 
Our approach TFN Cmax and TWL MOEA/D 

Cmax: makespan; TWL: total machine workload; TFT: total flow time; AI: agreement index; TEC: total energy consumption; TWT:total weighted tardiness.  
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performance. A different local right shift method is introduced by 
(Gonzalez-Rodriguez et al., 2020) to optimize objective targeted. (Li 
et al., 2020) designed an initial strategy combining four rules and 
randomly choose mutation from six local search methods. (Pan, Lei, & 
Wang, 2021) proposed a bi-population co-evolutionary algorithm. 
However, parameter has a great impact on the performance of algo
rithm, but the adaptive parameter adjustment has not been considered 
for MOFFJSP, according to previous works. Thus, it is worth for studying 
a adaptive parameter selection model to increase the convergence and 
diversity. 

2.2. Fuzzy set 

A fuzzy set F̃ consists of elements x and membership function μ̃
F
(x). 

μ̃
F
(x) means the possibility of x belonging to F̃. All of x belong to a 

definite set X. The definition of fuzzy set is given as follows: 

F̃ =
{
x, μ

F̃

(
x
)⃒
⃒∀x ∈ X

}
, 0⩽μ

F̃

(
x
)

⩽1 (1)  

The classical set is definite. When μ̃
F
(x) = 1, the fuzzy set transfer to 

classical set. 

F =
{
x, μ

F̃

(
x
)
= 1

⃒
⃒∀x ∈ X

}
(2)  

Triangle fuzzy number (TFN) is the widely used membership function in 
scheduling. As shown in Fig. 1, the membership function is similar to the 
triangle. t1 is the earliest processing time, t2 is the most possible pro
cessing time and t3 is the latest processing time. A triple (t1, t2, t3) usually 
represents a TFN. The definition of TFN membership are given as 
follows: 

μ
F̃

⎛
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⎟
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=

⎧
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0, x⩽t1,
x − t1
t2 − t1

, t1 < x⩽t2,

t3 − x
t3 − t2

, t2 < x < t3,

0, x⩾t3.

(3)  

2.3. Fuzzy Operators 

(Sakawa & Mori, 1999) defines three operators in a fuzzy set. 
Addition operator, Ranking operator, and Max operator. Give two TFNs 

s̃ = (s1, s2, s3) and t̃ = (t1, t2, t3), the three operators are computed as 
follows.(1) Addition operator. 

s̃+ t̃ =
(
s1 + t1, s2 + t2, s3 + t3

)
. (4)  

(2) Ranking operator. 

f1
(

x̃
)

=
x1 + 2x2 + x3

4
. (5)  

Condition 1. if f1 (̃s) > f1 (̃t), s̃ > t̃, otherwise ̃s < t̃. 
Condition 2. f2(x̃) = x2, when f1 (̃s) = f1 (̃t), if f2 (̃s) > f2 (̃t), then ̃s > t̃; 

otherwise ̃s < t̃. 
Condition 3. f3(x̃) = s3 − s1, when f2 (̃s) = f2 (̃t), if f3 (̃s) > f3 (̃t), then 

s̃ > t̃; otherwise ̃s < t̃.(3) Max operator. if ̃s > t̃, then ̃s ∨ t̃ = s̃; otherwise 
s̃ ∨ t̃ = t̃. 

3. Problem statement and mathematical modeling 

3.1. Problem statement 

A flexible job shop scheduling problem with fuzzy processing time 
(FFJSP) from a real-world manufacturing process can be described as 
follow. There is a set of n jobs, I = {1,2,…, i,…, n} and a set of m ma
chines, M = {1,2,…,k,…,m}. Each job Ii has a operation set J sizing ni,

J = {Oi,1,Oi,2,…,Oi,j,…,Oi,ni}. Each operation can be processed on part of 
machines or all machines. And all the processing time of operation Oi,j 

on machine Mk is a TFN P̃
O
i,j,k = (p1, p2, p3). FFJSP includes two sub

problems, machine assignment and operation sequencing. The former is 
that each operation selects‘ a machine from a candidate set. The latter is 
to schedule all operations on all machines to get satisfactory schedules. 
The assumptions of FFJSP is given as below:  

• All jobs, and machines are available at time zero.  
• For each machine, it can at most process one operation at the same 

time. And interruption is not considered for each operation. 
• All the processing date such as processing time and energy con

sumption is TFN.  
• Each operation can only be assigned to one machine.  
• Transportation time, setup time, and their energy consumption are 

not considered. 

Fig. 1. Triangular membership function.  
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3.2. MILP model for MOFFJSP 

Before modeling this MOFFJSP, The notations used throughout the 
study are as follows:i, i′: indices for jobs. 

j, j′: indices for operations of jobs. 
k,k′: indices for machines. 
t: index for position. 
n: total number of jobs. 
m: total number of machines. 
ni: number of operations of jobs. 
nmax: maximum number of operations of all jobs. 
pk: number of positions of machine Mk and pk =

∑
i∈I
∑

j∈Ji
xi,j,k. 

I: set for jobs and I = {1,2,…,n}. 
M: set of machines and M = {1,2,…,m}. 
Ji: set for the operations of jobs Ii and Ji = {1,2,…,ni}. 
Pk: set of positions of machine Mk in and Pk = {1,2,…,pk}. 
P′

k: set of top pk-1 positions of machine Mk in and P′

k = {1, 2, …,

pk − 1}. 
Oi,j: The jth operation of job Ii. 

P̃
O
i,j,k: The processing time for operation Oi,j job Ii processed by ma

chine Mk, which is a TFN: P̃i,j,k = (p1,p2,p3). 
S̃i,j: the start time of operation Oi,j. 
C̃i,j: the completion time of operation Oi,j. 
B̃k,t : the start time of machine Mk on position t. 
TWL total machine workload. 
Cmax: the makespan of a schedule. 
L: a large number for maintaining the consistency of the inequality. 
xi,j,k binary constant that takes 1, if operation Oi,j processed by ma

chine Mk. 
Xi,j,k,t: If operation Oi,j is processed by on machine Mk in position Pkt , 

the value is set to 1; otherwise is set to 0. 
Yk,t : If machine Mk is processing a operation in position t, the value is 

set to 1; otherwise is set to 0. 
The objectives of MOFFJSP include makespan and total workload 

(TWL), which are elaborated as follows:(1) Makespan criterion: Make
span is usually considered as the economic criterion in scheduling 
problems. That is, makespan can reflect the production benefit of an 
enterprise to some extent. Thus, makespan Cmax objective of MOFFJSP 
can be defined below: 

minF1 = Cmax = max
{
C̃i,ni

}
, ∀i ∈ I. (6)  

(2) TWL criterion: TWL during the manufacturing process can be seen as 
one key indicator. TWL criterion reflects the degree of machine wear. In 
this study, the second objective is to minimize TWL through the 
following formula: 

minF2 =
∑

k∈M

∑

t∈pk

∑

i∈I

∑

j∈Ji

P̃
O
i,j,k⋅Xi,j,k,t. (7)  

In summary, a MILP model for MOFFJSP is as follows: 

Objectives :
{

minF1 = Cmax
minF2 = TWL (8)  

Subject to: 
∑

k∈K

∑

t∈Pk

Xi,j,k,t = 1,∀i ∈ I, j ∈ Ji (9)  

∑

k∈K

∑

t∈Pk

Yk,t⩽1, ∀i ∈ I, j ∈ Ji (10)  

S̃i,ni +
∑

k∈K

∑

t∈Pk

P̃
O
i,ni ,k⋅Xi,ni ,k,t⩽Cmax,∀i ∈ I (11)  

S̃i,j +
∑

k∈K

∑

t∈Pk

P̃
O
i,j,k⋅Xi,j,k,t⩽S̃i,j+1, ∀i ∈ I, j ∈ Ji − 1 (12)  

∑

i∈I

∑

j∈nmax

Xi,j,k,t⩽1, ∀k ∈ K, t ∈ Pk (13)  

∑

i∈I

∑

j∈nmax

Xi,j,k,t⩾
∑

i∈I

∑

j∈nmax

Xi,j,k,t+1,∀k ∈ K, t ∈ P′

k (14)  

B̃k,t+1 − B̃k,t⩾
∑

i∈I

∑

j∈nmax

Xi,j,k,t+1⋅P̃
O
i,j,k, ∀k ∈ K, t ∈ Pk − 1 (15)  

B̃k,t⩾S̃i,j − M⋅
(

1 − Xi,j,k,t+1

)
,∀i ∈ I, j ∈ Ji, k ∈ K, t ∈ Pk (16)  

B̃k,t⩽S̃i,j − M⋅
(

1 − Xi,j,k,t+1

)
,∀i ∈ I, j ∈ Ji, k ∈ K, t ∈ Pk (17)  

0⩽S̃i,j⩽M, i ∈ I, j ∈ Ji (18)  

B̃k,t⩾0, k ∈ K, t ∈ Pk (19)  

Eq. (8) are two objectives including makespan and TEC. Eq. 9,10 gua
rantees that each job must be processed on one machine at a time. Eq. 
(11) defines the makespan. Eq. (12)guarantees that the proceeding must 
have been processed before current operation starting. Eq. (13) indicates 
that at most one operation can be assigned to a position of a machine. 
Eq. (14) forces that an operation must be assigned to the preceding 
positions only when they are occupied by other operations. Eq. (15) 
assures relationship between two adjacent positions of a machine. Eqs. 
(16) and (17) define the relation between machine start time and 
operation start time. Eq. (18) and (19) are value range limitations. 

4. Proposed algorithm 

4.1. Motivation 

In the previous works for MOFFJSP, most of them adopt local search 
to improve convergence. But continuously executing local search will 
lead the population to converge into a few points. The solution from the 
non-dominated solution set will reduce so does the diversity. But 
crowding distance strategy could not solve this problem efficiently. 
Because fast non-dominated sorting focus convergence first. MOEA/D 
applied weight vector and Tchybecheff function and it focuses on both 
convergence and diversity. The solution always distributes around 
weight vectors. We also design an initial strategy and VNS to improve 
the convergence further. However, when MOEA/D set the different 
number of neighborhood, the best parameter for each FFJSP instance is 
different. So we applied a history memory to preserve the count of 
success and failure times for each parameter. According to their per
formance and transfer memory into a probability of being selected. So 
that the MOEA/D can choose the best parameter automatically. 

Algorithm 1. The Framework of HPEA.  
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4.2. Framework of HPEA 

In this section, we describe the detailed components of the proposed 
HPEA. We present step-by-step descriptions of the solution representa
tion and decoding mechanism, the initialization strategy, crossover and 
mutation method, variable neighborhood search and parameter adap
tion strategy steps. The framework of the HPEA is described in Algo
rithm 1. 

4.3. Encoding and decoding 

In this paper, two one-dimensional vectors are used to represent the 
solution. The operation sequence is used to indicate the processing 
sequence for all operations. And the machine selection is used to 
represent the assigned machine for each operation. The two vectors are 
set with the same length which is equal to the total number of 
operations. 

Fig. 2 displays an encoded solution. The solution representation 
contains two vectors. The operations sequence is O3,1,O2,1,O1,1,O2,2,O1,2,

O3,2,O1,3,O3,3,O2,3. The machine selection is M1,M3,M2,M2,M2,M3,M2,

M2,M1. It is a one-to-one correspondence. For example, O3,1 selected M1 

and O2,1 selected M3. 
The decoding of a solution is to assign the appropriate processing 

time for each operation on its selected machine according to the oper
ation sequence. When a solution is decoded, the first vector in Fig. 3 is 
converted into a sequence of operations at frits. Then each operation is 
assigned to a selected machine from the second vector in Fig. 2. Finally, 
the fuzzy processing times are assigned to the operation. In this paper, 
each solution is decoded into a fuzzy schedule. That is the processing 
time is a TFN. 

4.4. Initialization strategy 

In this section, three classical initialization strategies and a combi
nation initial strategy are described. 

To obtain an initial population with high quality and diversity, the 

initial strategy should combine different strategies’ advantages. Many 
classical strategies have been proposed, such as Random rule (Gao et al., 
2015b), local minimum processing time (LS) rule (Shaheed, Shukor, & 
Abdullah, 2018), global minimum workload (GW) rule (Li et al., 2020). 
The descriptions of three strategies are given as follows: 

Random: This rule is simple and ensures the initial population has 
high diversity. (1) repeat each job Ji for Θi times to generate a sched
uling vector. (2) randomly rearrange the sequence for all operations in 
the scheduling vector. (3) randomly choose a machine from the opera
tion’s candidate set for each operation and generate a routing vector. 

LS: This rule aims to reduce the fuzzy makespan (maximum 
completion time). (1) randomly generate a scheduling vector same as 
the Random rule. (2) for each operation, choose the minimum pro
cessing time machine from the candidate set to generate the routing 
vector. 

GW: This rule focuses on lower the total machine workload. (1) put 
O1,1,O2,1,…,On,1 into scheduling vector and rearrange the sequence. (2) 
rearrange the sequence of the rest operation and connect after the 
former sequence. (3) for each operation, choose an available machine 
with the minimum workload. If more than one machine has the same 
workload, then select the machine with minimum processing time for 
the operation. 

Step (1) and (2) in GW are to prevent that one job from continuously 
appears in the head of the scheduling vector. If the head of the sched
uling vector is O1,1,O1,2,…,O1,n1 , then according to GW each operation of 
job 1 will select the minimum workload machine. But at the beginning, 
each machine’s workload is zero, so job J1 will select the machine in 
order. That will result in other jobs must wait for O1,n1 to be finished. On 
account of constraint (11), the following operation must wait for the 
previous operation to be finished. So O1,n1 will waste too much time. 

The advantages of the three strategies are combined to obtain a 
population of high quality. A method called MIX3 is developed and the 
description is given in Algorithm 2. 

Algorithm 2. MIX3 rule.  

R. Li et al.                                                                                                                                                                                                                                        



Computers & Industrial Engineering 168 (2022) 108099

6

4.5. Crossover and mutation 

To get a large searching step, a discrete crossover and mutation 
methods POX (Gao et al., 2015a) for MOFFJSP is applied. Fig. 3 gives 
two examples. The description is given as follows: 

Operation sequence crossover: (1) Randomly divide job set into 
two subset J1 and J2. (2) Select two solutions S1 and S2. For each job 
belonging to J1, copy their operations into NewS1. And for each job 
belonging to J2, copy their operations into NewS2. (3) There exist too 
much space that is not filled with operation in NewS1 and NewS2. From 
the part of S2, copy the operation which do not appear in NewS1 to the 
vacant positions in NewS1 from left to right according to the order of the 
sequence in S2. And do the similar thing to NewS2. The procedure is 
illustrated in Fig. 3. 

Machine selection crossover: (1) Randomly generate a 0–1 vector 
which length equals the total number of operations. (2) Select two so
lution M1 and M2. Exchange the value in M1 and M2, where it is 1 at the 
same position in 0–1 vector. The procedure is illustrated in Fig. 3. 

Operation sequence mutation: randomly select two positions in 
the operation sequence and exchange the value. Machine selection 
mutation: randomly select two positions in the machine selection and 
select a new machine from its candidate set. 

4.6. Update strategy 

Diversity is an important metric of MOEAs. Uniformly distributed 

Pareto solutions can provide more and better decision selection for in
dustry. Reference vector is a classical method in MoP. Depending on it 
and Tchebycheff aggregate function (TAF) (Zhang & Hui, 2007), solu
tions can uniformly distribute around reference vector, which leads to 
good diversity. TAF merges all objective functions and replace the 
strange domination sequence by a wake single-value function and it can 
efficiently balance the convergence and diversity. The equation of 
Tchebycheff aggregate function is given as follows: 

gte
(

x
⃒
⃒
⃒
⃒λ

j,Z*
)

= max
1⩽i⩽m

{

λji

⃒
⃒
⃒
⃒fi
(

x
)

− Z*
i

⃒
⃒
⃒
⃒

}

(20) 

Fig. 4 gives an example of calculating TAF. P1 bias two objective 
function values to reference point Z* and multiply by reference vector λi. 
Every solution in population P has a reference vector λi. Choose the max 
value of all dimension as the Tchebycheff function value, which is 
regarded evolutionary direction. The procedure of this update strategy is 
stated below: 

Update strategy: Calculate the TAF values of current solution X and 
its all neighborhood solutions P t(NM) sizing At . If gte(X

⃒
⃒λi,Z*) <

gte(P t(NM(k))
⃒
⃒ λi, Z*), then update the neighborhood solution 

P t(NM(k)), where NM is the neighborhood matrix. 

Algorithm 3. Variable neighborhood search.  
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4.7. Variable neighborhood search 

In this section, a variable neighborhood search fixed with five local 
search methods is proposed. At the beginning of the iteration, the pop
ulation spreads out to find various solutions with high diversity because 
of weight vectors. Then VNS is applied to search solution around the 
current solution to jump out of local optima and improve the conver
gence. The description of five local search methods is given as follows: 

LS1: Find the last finished operation Oi,Θi , move Oi,Θi to another ma
chine M′ with minimum processing time.  

LS2: Randomly select an operation Oi,j and move it to another machine 
with minimum processing time.  

LS3: Find the maximum workload machine M. Randomly select a 
operation which processed by M and move it to another machine 
M′.  

LS4: Randomly choose two positions on the scheduling vector and 
exchange the value.  

LS5: Randomly choose two positions on the scheduling vector and 
insert the latter one in front of the former one. 

We design a VNS method fixed with five local search methods 
mentioned above. The description is given in Algorithm 3. 

We execute each local search for one time to generate a new solu
tions. Then adjust whether the new solution can update the current 
solution P(i). This lets the solution fully exploit in the surrounding, 
which can help jump out of local optima and improve the convergence. 

Fig. 5 gives an example of VNS to illustrate how VNS works. The 
black dotted arc is the assumed Pareto Front. And P1,P2,P3,P4, P5 is the 
non-dominated solution in Pareto Front. The red point L1, L2 are local 
optima. The black point S1, S2, S3, S4 are solutions in population. S1, S2 
fall into local optima L1 and VNS starts to work. L1 uses different 
neighborhood actions to generate some candidate solution. Compare to 
those candidate solutions, solution might jump out of local optima. The 
red circle simulates VNS is exploiting around L1. S3 dominates L1 so VNS 
succeeds. Sometime, local optima can straightly converge such as L2 to 
P5. But S4’s Tchebycheff function might be better than L2, which is also a 
successful VNS, because S4 might converge into P4. 

Algorithm 4. Parameter adaption strategy.  

4.8. Parameter adaption strategy 

The parameter adaption strategy will be reported in this section. The 
performance of HPEA is impacted by parameter setting. So inspired by 
(Qin, Huang, & Suganthan, 2009), we design a parameter adaption 
strategy to let HPEA dynamically choose the best parameter. The pro
cedure is stated as below: 

Parameter adaption strategy: (1) Initial a parameter candidate set 
with n element T = {T1,T2,…,Tn}. Set a uniform probability for each 
parameter. (2) Execute roulette algorithm (Qin et al., 2009) to assign a 
parameter Ti ∈ T to each individual P(i) in population P. (3) Count the 
number of updating old solution successfully and unsuccessfully times 
(nsi and nf i) of each Ti in this generation. Meanwhile, add this record to 
the tail of memory as shown in Fig. 6. In addition, as for nsi,G− j, i = 1,… 
, n, j = 1,…, LP,G is the number of current iteration.(4) If the length of 
SM and FM is bigger than learn-rate LP, delete the first record in SM and 
FM. Then, update the selection probability Pi of each parameter Ti. Next, 
sum each column in SM(FM) as SR(FR). Finally, the selection probability 
Pi can be got. (5) Normalize Pi to let the sum equal to 1. Algorithm 4 
gives the detail. 

5. Experimental Results 

In Section 4, the designed algorithm has been described in detail. In 
this section, we design detailed experiments to evaluate the performance 
of the proposed HPEA algorithm. HPEA and the comparison algorithms 
are coded in MATLAB on an Intel Core i7 6700 CPU @ 3.4 GHz with 8G 
RAM. For fairness, all algorithm runs 30 independent times on each 
instance with same stopping criteria (MaxIter = 200). Noting that, to 
verify the convergence and diversity of the proposed algorithm, after 30 
independent runs, the average results are collected for performance 
comparison. 

The comparison algorithms include MOEA/D (Zhang & Hui, 2007), 
MOEA/D-M2M (Liu, Gu, & Zhang, 2014), NSGA-III (Deb & Jain, 2014), 
MO-LR (Wang, Gong, Wu, & Zhang, 2020), and IAIS (Li et al., 2020). 
And three metrics are used as the performance measures like Hyper
volume (HV) (While, Hingston, Barone, & Huband, 2006) value, Gen
eration Distance (GD), and Spread (Deb, Pratap, Agarwal, & Meyarivan, 
2002). The equations are given as follows: 
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HV
(
P, r

)
=

⋃P

x∈P
v
(

x, r
)
. (21)  

GD

⎛

⎜
⎜
⎝P,P*

⎞

⎟
⎟
⎠ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

y∈P
min
x∈P*

dis(x, y)2
√

|P|
(22)  

Spread =

dl + df +
∑N− 1

i=1

⃒
⃒
⃒
⃒di − d

⃒
⃒
⃒
⃒

dl + df +
(
N − 1

)
d

(23)  

HV can measure the comprehensive performance of one algorithm. 
Regarding these metrics, lower GD and Spread values are better, but a 
bigger HV value is better. 

5.1. Experimental instances 

Three benchmarks are selected to verify the convergence and di
versity of the proposed HPEA. The first benchmark Lei01 and Lei02 are 
obtained from (Lei, 2010) (Lei, 2012). The second benchmark Remanu is 
provided by (Gao et al., 2015b). All the instances are FFJSP with fuzzy 
processing time. Moreover, we transformed a flexible job shop 

scheduling problem benchmark Mk (Brandimarte, 1993). Refer to each 
processing time b, two integers a and c were randomly generated in 
interval [0, b/2]. (a, b, c) is a TFN. Therefore, Mk benchmark is con
verted to the FFJSP benchmark FMk. 

On the first benchmark, each operation can select all machines as a 
candidate set. There are 5 instances in Lei01 and Lei02, where N =10, 10, 
10, 10, 15, and the total number of operation SH = 40, 40, 50, 50, 80. 
And M = 10 for all instance. 

On the second benchmark, not all machine can be chosen as candi
date set because it is an incomplete FFJSP. There are 8 instances in 
Remanu, where N = 5, 8, 10, 10, 15, 15, 20, 20., SH = 23, 64, 81, 100, 
171, 185, 308, 355. and M = 4, 8, 6, 10, 8, 10, 10, 15. 

The third benchmark is similar to the second one. An operation can 
not be processed on all machine. There are 10 instances in FMk, where N 
= 10, 10, 15, 15, 15, 10, 20, 20, 20, 20., SH = 55, 58, 150, 90, 106, 150, 
100, 225, 240, 240. and M = 6, 6, 8, 8, 4, 15, 5, 10, 10, 15. 

5.2. Experimental parameters 

The parameter configuration can impact the performance of the al
gorithm in solving this problem. The proposed HPEA contains three 
parameters. The mutation rate R, size of success and failure memory LP 
and the candidate parameter vector T. A Taguchi approach of design-of- 
experiment (DOE)(Van Nostrand, 2002). The parameter level is given as 
follows:  

• R = 0.4, 0.5, 0.6, 0.8.  
• LP = 45, 50, 55, 60.  
• T= {T1={3,5,7,8,10}, T2={3,5,7,8,10,12}, 

T3={3,5,7,8,10,12,14}, T4={3,5,7,8,10,12,14,16,18,20}}. 

An orthogonal array L16(44) is adopted in this calibration experi

Fig. 2. Encoding representation.  

Fig. 3. An example of the crossover methods of two vectors.  

Fig. 4. An Example of calculating Tchebycheff function.  
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ment. For fairness, each parameter runs 30 independent times. The 
population size Np is 100 and the max generation G is 200. We collect 
the average HV value for 30 runs. Fig. 7 shows the main effects plot of 
three parameters for all metrics. The higher HV metric values is, the 
better performance is. But for GD and Spread, the lower metrics are, the 
better performance is. Based on the comprehensive observation, the best 
configure of parametric value is set as R = 0.8,LP = 45,T = T2. 

5.3. Effectiveness of each improvement part of HPEA 

To verify the effectiveness of each improvement part of the proposed 
algorithm, we compare three variants of HPEA, where HPEA1 denotes 
pure MOEA/D, HPEA2 represents HPEA1 embedding with initialization 
heuristic, and HPEA3 denotes HPEA2 adding VNS strategy. HPEA is 
HPEA3 embedding with parameter adaption strategy. Table 2 lists 
metrics values over 30 independent runs on 23 instances. The best mean Fig. 5. Illustration of VNS.  

Fig. 6. Success memory and failure memory.  

Fig. 7. Main effects plot of three metrics: (c) HV, (d) GD and (e) Spread.  
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Table 2 
Statistical results of all metrics of HPEA and its variants in all instances.   

HV  
instances HPEA1 HPEA2 HPEA3 HPEA   

mean std mean std mean std mean std  

data1 9.42E-02 3.26E-03 9.57E-02 2.73E-03 9.83E-02 1.84E-03 9.67E-02 2.48E-03  
data2 9.55E-02 3.04E-03 9.63E-02 2.98E-03 9.87E-02 2.21E-03 9.70E-02 3.05E-03  
data3 6.20E-02 3.24E-03 6.38E-02 3.26E-03 6.57E-02 2.58E-03 6.47E-02 2.03E-03  
data4 5.92E-02 2.99E-03 6.01E-02 2.83E-03 6.19E-02 2.66E-03 6.21E-02 2.47E-03  
data5 4.81E-02 2.50E-03 5.09E-02 2.91E-03 5.36E-02 1.84E-03 5.34E-02 2.16E-03  
FMk01 5.85E-02 3.63E-03 5.61E-02 3.27E-03 5.64E-02 3.18E-03 5.85E-02 2.64E-03  
FMk02 4.04E-02 2.15E-03 3.89E-02 2.48E-03 4.09E-02 2.68E-03 4.15E-02 2.07E-03  
FMk03 5.67E-02 9.46E-04 5.64E-02 1.13E-03 5.76E-02 1.12E-03 5.72E-02 1.19E-03  
FMk04 9.39E-02 1.75E-03 9.51E-02 1.64E-03 9.42E-02 2.30E-03 9.53E-02 1.81E-03  
FMk05 3.72E-02 1.25E-03 3.76E-02 1.16E-03 3.76E-02 1.11E-03 3.74E-02 8.96E-04  
FMk06 4.52E-02 3.24E-03 4.34E-02 3.21E-03 4.61E-02 2.82E-03 4.51E-02 2.72E-03  
FMk07 5.81E-02 1.44E-03 5.71E-02 1.80E-03 5.70E-02 1.38E-03 5.71E-02 1.48E-03  
FMk08 1.96E-02 1.11E-03 1.84E-02 1.09E-03 1.95E-02 8.87E-04 1.97E-02 8.91E-04  
FMk09 3.35E-02 1.75E-03 3.30E-02 2.00E-03 3.36E-02 1.64E-03 3.30E-02 1.85E-03  
FMk10 3.94E-02 1.90E-03 4.06E-02 2.53E-03 4.13E-02 2.30E-03 4.12E-02 2.36E-03  
remanu01 3.70E-02 1.65E-03 3.69E-02 1.87E-03 3.67E-02 1.95E-03 3.70E-02 1.65E-03  
remanu02 3.55E-02 3.33E-03 3.66E-02 3.47E-03 3.68E-02 3.06E-03 3.81E-02 2.49E-03  
remanu03 3.23E-02 2.45E-03 3.24E-02 2.38E-03 3.37E-02 2.74E-03 3.48E-02 2.50E-03  
remanu04 3.92E-02 3.40E-03 3.93E-02 3.03E-03 4.25E-02 2.71E-03 4.27E-02 3.20E-03  
remanu05 3.48E-02 2.15E-03 3.66E-02 1.97E-03 3.84E-02 1.58E-03 3.84E-02 1.78E-03  
remanu06 3.77E-02 2.56E-03 4.26E-02 2.16E-03 4.60E-02 2.41E-03 4.65E-02 1.98E-03  
remanu07 3.16E-02 3.13E-03 4.21E-02 2.36E-03 4.72E-02 2.16E-03 4.76E-02 2.35E-03  
remanu08 4.12E-02 3.82E-03 6.77E-02 3.76E-03 7.47E-02 2.53E-03 7.42E-02 2.74E-03             

GD  
instances HPEA1 HPEA2 HPEA3 HPEA   

mean std mean std mean std mean std  
data1 6.56E-03 2.56E-03 4.62E-03 2.76E-03 2.92E-03 7.64E-04 3.96E-03 1.13E-03  
data2 4.89E-03 1.83E-03 4.18E-03 1.66E-03 2.09E-03 7.42E-04 2.85E-03 1.13E-03  
data3 7.60E-03 2.41E-03 8.33E-03 5.24E-03 4.26E-03 1.10E-03 4.83E-03 1.26E-03  
data4 1.07E-02 4.99E-03 7.14E-03 2.57E-03 5.09E-03 1.14E-03 5.97E-03 3.52E-03  
data5 1.87E-02 1.13E-02 1.69E-02 9.03E-03 1.25E-02 5.68E-03 1.21E-02 5.59E-03  
FMk01 9.71E-03 6.05E-03 9.82E-03 5.78E-03 6.59E-03 4.13E-03 5.25E-03 3.15E-03  
FMk02 7.46E-03 4.43E-03 1.04E-02 4.41E-03 6.10E-03 4.93E-03 5.77E-03 3.43E-03  
FMk03 1.18E-03 3.95E-04 7.47E-04 2.90E-04 5.82E-04 1.72E-04 7.01E-04 3.52E-04  
FMk04 1.46E-03 3.91E-04 1.40E-03 6.19E-04 1.27E-03 5.87E-04 1.24E-03 4.94E-04  
FMk05 7.82E-04 4.53E-04 7.83E-04 2.94E-04 6.55E-04 2.63E-04 7.26E-04 2.58E-04  
FMk06 1.33E-02 3.56E-03 1.46E-02 4.92E-03 1.02E-02 6.01E-03 1.08E-02 4.60E-03  
FMk07 1.26E-03 4.83E-04 1.30E-03 4.41E-04 1.20E-03 4.35E-04 1.33E-03 5.77E-04  
FMk08 4.24E-04 2.63E-04 5.31E-04 3.07E-04 2.97E-04 1.93E-04 3.44E-04 2.25E-04  
FMk09 2.59E-03 9.61E-04 1.71E-03 1.06E-03 1.29E-03 8.31E-04 1.42E-03 5.13E-04  
FMk10 4.47E-03 1.29E-03 3.66E-03 1.97E-03 2.90E-03 1.52E-03 3.20E-03 1.61E-03  
remanu01 4.14E-03 4.87E-03 4.69E-03 4.64E-03 4.35E-03 4.74E-03 3.09E-03 4.01E-03  
remanu02 3.22E-02 1.43E-02 2.75E-02 1.09E-02 2.34E-02 1.25E-02 2.21E-02 1.05E-02  
remanu03 1.43E-02 7.47E-03 1.30E-02 7.88E-03 9.94E-03 9.18E-03 6.07E-03 3.48E-03  
remanu04 9.67E-03 5.14E-03 9.98E-03 4.40E-03 4.93E-03 2.69E-03 4.39E-03 2.10E-03  
remanu05 8.54E-03 3.13E-03 6.05E-03 2.43E-03 4.67E-03 1.07E-03 4.52E-03 1.86E-03  
remanu06 3.87E-02 1.05E-02 3.13E-02 7.04E-03 2.10E-02 1.37E-02 2.29E-02 1.45E-02  
remanu07 3.86E-02 1.14E-02 2.66E-02 8.58E-03 1.53E-02 8.67E-03 1.77E-02 9.55E-03  
remanu08 5.81E-02 9.46E-03 3.50E-02 1.02E-02 2.48E-02 1.14E-02 2.59E-02 1.34E-02             

Spread  
instances HPEA1 HPEA2 HPEA3 HPEA   

mean std mean std mean std mean std  
data1 9.33E-01 1.72E-01 8.46E-01 1.26E-01 8.29E-01 1.40E-01 8.31E-01 1.18E-01  
data2 9.86E-01 1.28E-01 9.46E-01 1.12E-01 9.07E-01 1.41E-01 9.80E-01 1.13E-01  
data3 9.16E-01 1.77E-01 9.34E-01 1.63E-01 9.22E-01 1.58E-01 9.29E-01 1.88E-01  
data4 9.91E-01 1.94E-01 8.82E-01 1.36E-01 9.50E-01 1.81E-01 9.32E-01 1.92E-01  
data5 9.97E-01 1.92E-01 9.49E-01 1.88E-01 9.28E-01 2.65E-01 9.09E-01 2.34E-01  
FMk01 8.03E-01 2.03E-01 7.76E-01 1.70E-01 7.31E-01 2.04E-01 7.25E-01 2.14E-01  
FMk02 8.88E-01 2.02E-01 8.94E-01 2.01E-01 9.02E-01 2.03E-01 8.88E-01 1.78E-01  
FMk03 9.88E-01 1.04E-01 1.12E+00 9.30E-02 1.15E+00 8.11E-02 1.13E+00 1.32E-01  
FMk04 8.40E-01 8.62E-02 8.45E-01 8.37E-02 8.16E-01 7.92E-02 8.61E-01 8.99E-02  
FMk05 8.16E-01 8.76E-02 7.68E-01 8.18E-02 7.89E-01 1.30E-01 8.14E-01 1.23E-01  
FMk06 7.10E-01 1.21E-01 7.36E-01 1.33E-01 7.33E-01 1.48E-01 7.18E-01 1.23E-01  
FMk07 7.65E-01 1.07E-01 7.34E-01 7.06E-02 7.51E-01 9.06E-02 7.44E-01 9.98E-02  
FMk08 5.58E-01 2.72E-01 6.25E-01 2.47E-01 4.97E-01 3.03E-01 4.54E-01 2.61E-01  
FMk09 8.97E-01 1.22E-01 8.92E-01 1.03E-01 9.01E-01 1.17E-01 8.95E-01 8.50E-02  
FMk10 8.90E-01 1.33E-01 9.67E-01 1.20E-01 8.88E-01 1.69E-01 9.08E-01 1.48E-01  
remanu01 1.05E+00 3.60E-01 9.13E-01 2.73E-01 9.90E-01 3.53E-01 1.11E+00 3.65E-01  
remanu02 1.02E+00 1.41E-01 9.89E-01 2.06E-01 1.04E+00 1.97E-01 9.76E-01 2.81E-01  

(continued on next page) 
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values are marked in bold and gray. The last row is the Friedman 
ranking result and the P-value is 2.2716E-05 < 0.05. 

5.4. Comparison and discussion 

To further evaluate the performance of the proposed HPEA algo
rithm. We selected the following algorithms for comparison: MOEA/D, 
MOEA/D-M2M, NSGA-III, MO-LR, and IAIS. For each compared algo
rithm, the related parameter selects the best one discussed in Section 5.2 
and the results obtained after 30 independently runs are used to make 
detailed comparisons. 

The parameter is set that the number of neighborhood T = 10 and 
mutation rate R = 0.8. For MOEA/D, MOEA/D-M2M, NSGA-III and 
HPEA the number of weight vectors is equal to population size Np =

100. For MOEA/D-M2M size of sub-population S = 10. For HPEA LP =

45,T = T2. And IAIS’s parameter is set according to (Li et al., 2020), but 
to suit three benchmarks ω = 0.5 and CRmax = 1× 10− 4. To conduct a 
fair comparison, they use the above-mentioned encoding and decoding 
mechanism, and fuzzy operators. Table 3 lists statistical results (mean 

and standard deviation values) on three benchmarks. The optimal re
sults are marked in bold. And Table 4 records the Friedman rank test 
among all algorithms, where confidence level α = 0.05. 

Discussion: As observed in Table 3, HPEA achieves lower value than 
its competitors for the GD and HV metrics. Regarding the Spread, HPEA 
is inferior to MOEA/D but superior to the other algorithms. As observed 
in Table 4, HPEA ranks the first for HV and GD metrics, but ranks the 
second for Spread metric. Also, since the p-values for algorithms are 
smaller than the significance level of 0.05, it can be concluded that at 
least one of six algorithms has a significant difference effect for three 
metrics. The success of HPEA lies in its algorithm design. First, a coop
erative initialization strategy is proposed to generate one high-quality 
population. Second, we utilize problem-specific knowledge and then 
regard this knowledge as a general VNS heuristic. This knowledge-based 
VNS can guide trial solutions towards Pareto optimal solutions. By 
contrast, the other MOEAs does not have this local search. Third, a 
parameter adaption strategy is designed to let algorithm select the best 
parameter to further improve the performance. (See Table 5). 

To visualize the behavior of different algorithms on those 

Table 2 (continued )  

HV  
instances HPEA1 HPEA2 HPEA3 HPEA   

mean std mean std mean std mean std  

remanu03 9.56E-01 1.91E-01 9.77E-01 1.89E-01 9.75E-01 1.88E-01 9.91E-01 2.42E-01  
remanu04 8.83E-01 1.20E-01 8.96E-01 1.50E-01 8.68E-01 1.52E-01 8.76E-01 2.11E-01  
remanu05 8.88E-01 1.93E-01 8.84E-01 1.87E-01 7.85E-01 1.87E-01 8.74E-01 2.66E-01  
remanu06 9.72E-01 9.76E-02 9.91E-01 1.25E-01 1.10E+00 2.21E-01 1.09E+00 2.01E-01  
remanu07 9.92E-01 1.08E-01 9.87E-01 1.19E-01 1.08E+00 1.87E-01 1.12E+00 3.58E-01  
remanu08 9.87E-01 6.64E-02 1.05E+00 1.39E-01 1.21E+00 5.90E-01 1.13E+00 2.80E-01   

Table 3 
Statistical values of three metrics among all algorithm.  

MOEAs HV GD Spread  
mean std mean std mean std 

MOEA/D 1.10E-01 2.68E-03 2.04E-02 5.10E-03 9.02E-01 1.30E-01 
MOEA/D-M2M 8.37E-02 1.00E-02 5.07E-02 1.26E-02 9.91E-01 1.72E-01 
NSGA-III 9.25E-02 5.15E-03 3.33E-02 9.46E-03 1.01E+00 1.39E-01 
MO-LR 1.01E-01 4.06E-03 2.63E-02 8.04E-03 1.03E+00 1.63E-01 
IAIS 1.01E-01 6.02E-03 4.10E-02 1.44E-02 1.04E+00 1.33E-01 
HPEA 1.15E-01 2.23E-03 1.88E-02 4.70E-03 9.03E-01 1.52E-01  

Table 4 
Overall ranks through the friedman test of three metrics among algorithm(a level of significant α = 0.05).  

MOEAs HV GD Spread  
rank p-value rank p-value rank p-value 

MOEA/D 1.913 9.16E-18 1.9565 3.82E-17 1.6957 2.03E-09 
MOEA/D-M2M 5.2609  5.5217  3.5217  
NSGA-III 4.6522  4.1739  4.1304  
MO-LR 3.3913  3.2609  4.7826  
IAIS 4.6087  4.7391  4.4783  
HPEA 1.1739  1.3478  2.3913   
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Table 5 
Statistical results of all metric of all algorithms in all instances.   

HV 
instances MOEA/D MOEA/D-M2M NSGA-III MO-LR IAIS HPEA  

mean std mean std mean std mean std mean std mean std 

data1 1.22E-01 3.42E-03 1.02E-01 4.23E-03 1.07E-01 4.66E-03 1.12E-01 5.28E-03 1.02E-01 8.84E-03 1.24E-01 2.59E-03 
data2 1.45E-01 3.06E-03 1.33E-01 3.49E-02 1.30E-01 5.71E-03 1.36E-01 4.01E-03 1.26E-01 9.20E-03 1.47E-01 3.12E-03 
data3 1.14E-01 3.11E-03 9.60E-02 4.71E-03 9.96E-02 6.11E-03 1.04E-01 4.89E-03 1.07E-01 4.89E-03 1.18E-01 1.69E-03 
data4 1.12E-01 2.90E-03 9.08E-02 5.15E-03 9.68E-02 6.80E-03 1.03E-01 4.86E-03 1.06E-01 4.85E-03 1.15E-01 2.39E-03 
data5 1.53E-01 3.47E-03 1.12E-01 6.38E-03 1.29E-01 7.64E-03 1.40E-01 7.33E-03 1.49E-01 6.37E-03 1.60E-01 3.36E-03 
FMk01 7.51E-02 3.46E-03 6.80E-02 3.00E-03 6.70E-02 3.96E-03 7.02E-02 2.43E-03 6.09E-02 6.65E-03 7.50E-02 2.53E-03 
FMk02 7.04E-02 1.50E-03 6.22E-02 2.84E-03 6.42E-02 3.77E-03 6.61E-02 2.82E-03 5.86E-02 3.21E-03 7.13E-02 1.47E-03 
FMk03 7.12E-02 1.15E-03 6.03E-02 2.38E-03 6.20E-02 2.90E-03 6.38E-02 2.21E-03 4.88E-02 1.02E-02 7.17E-02 1.50E-03 
FMk04 9.71E-02 1.68E-03 8.27E-02 2.88E-03 7.71E-02 6.65E-03 8.33E-02 4.85E-03 6.83E-02 7.27E-03 9.87E-02 1.73E-03 
FMk05 6.21E-02 8.93E-04 5.62E-02 3.83E-03 5.58E-02 1.73E-03 5.67E-02 1.32E-03 5.41E-02 3.32E-03 6.24E-02 6.49E-04 
FMk06 1.35E-01 5.79E-03 9.82E-02 5.78E-03 1.17E-01 6.64E-03 1.31E-01 5.23E-03 9.67E-02 1.27E-02 1.33E-01 4.86E-03 
FMk07 9.91E-02 8.29E-04 9.03E-02 2.63E-03 8.99E-02 2.90E-03 9.19E-02 2.00E-03 8.42E-02 5.27E-03 9.87E-02 9.92E-04 
FMk08 4.33E-02 9.40E-04 3.64E-02 1.09E-03 3.81E-02 9.22E-04 3.87E-02 1.34E-03 3.82E-02 1.30E-03 4.34E-02 7.58E-04 
FMk09 9.26E-02 1.68E-03 7.12E-02 3.62E-03 8.38E-02 3.82E-03 9.00E-02 2.37E-03 8.24E-02 5.66E-03 9.27E-02 1.75E-03 
FMk10 1.69E-01 2.11E-03 1.24E-01 5.35E-03 1.48E-01 5.28E-03 1.61E-01 4.76E-03 1.53E-01 1.37E-02 1.72E-01 2.40E-03 
remanu01 1.23E-01 1.63E-03 1.13E-01 5.33E-03 1.23E-01 1.68E-03 1.22E-01 2.94E-03 1.16E-01 6.73E-03 1.23E-01 1.64E-03 
remanu02 7.38E-02 3.28E-03 6.13E-02 4.04E-03 6.88E-02 3.82E-03 7.11E-02 3.73E-03 6.80E-02 5.46E-03 7.62E-02 2.46E-03 
remanu03 9.37E-02 1.61E-03 9.23E-02 3.21E-02 8.96E-02 2.06E-03 9.19E-02 1.78E-03 8.90E-02 2.64E-03 9.53E-02 1.66E-03 
remanu04 1.03E-01 2.45E-03 8.26E-02 5.17E-03 9.32E-02 4.72E-03 9.89E-02 2.64E-03 9.61E-02 3.04E-03 1.06E-01 2.44E-03 
remanu05 1.07E-01 2.56E-03 8.06E-02 4.53E-02 8.54E-02 5.22E-03 9.82E-02 3.47E-03 1.03E-01 2.91E-03 1.12E-01 1.86E-03 
remanu06 1.36E-01 3.07E-03 7.78E-02 6.53E-03 1.05E-01 7.58E-03 1.23E-01 6.19E-03 1.36E-01 4.78E-03 1.47E-01 2.18E-03 
remanu07 1.71E-01 5.64E-03 6.44E-02 3.61E-02 1.13E-01 1.01E-02 1.50E-01 8.31E-03 1.76E-01 4.29E-03 1.95E-01 3.95E-03 
remanu08 1.66E-01 5.53E-03 6.85E-02 6.54E-03 8.34E-02 1.37E-02 1.26E-01 8.60E-03 1.94E-01 5.20E-03 2.09E-01 3.38E-03               

GD 
instances MOEA/D MOEA/D-M2M NSGA-III MO-LR IAIS HPEA 

mean std mean std mean std mean std mean std mean std 
data1 6.06E-03 2.40E-03 2.55E-02 9.67E-03 1.20E-02 4.22E-03 1.01E-02 3.56E-03 1.46E-02 1.21E-02 3.63E-03 1.09E-03 
data2 3.24E-02 7.57E-03 6.67E-02 1.28E-02 4.85E-02 1.40E-02 3.55E-02 1.29E-02 8.99E-02 2.43E-02 3.99E-02 6.27E-03 
data3 5.67E-03 1.75E-03 4.36E-02 1.53E-02 1.65E-02 7.68E-03 1.11E-02 4.59E-03 1.43E-02 1.20E-02 3.12E-03 9.54E-04 
data4 8.31E-03 3.57E-03 4.69E-02 2.07E-02 2.12E-02 1.35E-02 1.45E-02 7.31E-03 9.33E-03 8.59E-03 4.23E-03 2.74E-03 
data5 1.39E-02 8.12E-03 6.07E-02 1.08E-02 3.36E-02 1.23E-02 2.46E-02 9.39E-03 2.35E-02 1.18E-02 8.82E-03 3.99E-03 
FMk01 8.64E-03 5.33E-03 1.85E-02 1.41E-02 1.17E-02 9.12E-03 1.01E-02 4.65E-03 2.04E-02 1.50E-02 4.70E-03 2.78E-03 
FMk02 5.61E-03 2.90E-03 3.05E-02 1.34E-02 1.16E-02 1.14E-02 9.07E-03 8.45E-03 2.07E-02 8.40E-03 4.67E-03 2.31E-03 
FMk03 1.25E-03 4.23E-04 5.61E-03 1.76E-03 4.16E-03 2.08E-03 2.71E-03 1.11E-03 5.29E-03 2.65E-03 7.25E-04 3.58E-04 
FMk04 1.45E-03 3.81E-04 1.94E-03 9.32E-04 1.39E-03 9.33E-04 1.68E-03 8.16E-04 6.93E-03 3.44E-03 9.89E-04 2.58E-04 
FMk05 6.75E-04 4.26E-04 1.79E-02 1.02E-02 4.99E-04 4.19E-04 8.24E-04 1.50E-03 3.48E-03 1.95E-03 5.64E-04 2.11E-04 
FMk06 9.55E-03 2.81E-03 3.96E-02 4.26E-03 1.91E-02 4.61E-03 1.02E-02 5.27E-03 4.73E-02 2.57E-02 7.39E-03 3.42E-03 
FMk07 1.05E-03 4.39E-04 5.85E-03 5.69E-03 3.14E-03 1.70E-03 1.85E-03 9.49E-04 3.43E-03 2.30E-03 1.13E-03 5.24E-04 
FMk08 3.53E-04 2.19E-04 1.22E-02 2.16E-02 7.77E-04 2.19E-03 3.37E-04 5.05E-04 2.19E-03 2.34E-03 2.83E-04 1.76E-04 
FMk09 2.14E-03 8.78E-04 3.63E-02 1.14E-02 7.58E-03 4.40E-03 3.38E-03 1.59E-03 5.67E-03 6.65E-03 1.01E-03 3.67E-04 
FMk10 3.46E-03 7.70E-04 3.35E-02 1.64E-02 1.13E-02 2.66E-03 7.03E-03 2.87E-03 9.11E-03 1.37E-02 1.67E-03 5.38E-04 
remanu01 3.04E-03 3.71E-03 2.39E-02 2.65E-02 3.81E-03 7.68E-03 1.13E-02 1.44E-02 6.04E-03 6.42E-03 2.21E-03 2.74E-03 
remanu02 2.40E-02 1.10E-02 7.19E-02 2.29E-02 4.09E-02 1.71E-02 3.83E-02 2.72E-02 4.63E-02 2.79E-02 1.59E-02 8.17E-03 
remanu03 1.18E-01 2.04E-02 1.28E-01 2.90E-02 1.56E-01 3.13E-02 1.42E-01 3.10E-02 2.19E-01 3.98E-02 1.47E-01 2.74E-02 
remanu04 6.41E-03 3.06E-03 5.19E-02 1.48E-02 1.64E-02 1.18E-02 8.63E-03 3.27E-03 1.73E-02 1.05E-02 2.98E-03 1.56E-03 
remanu05 1.27E-01 2.07E-02 1.39E-01 7.77E-03 1.45E-01 1.89E-02 1.42E-01 2.03E-02 2.42E-01 5.00E-02 1.39E-01 1.79E-02 
remanu06 2.39E-02 6.34E-03 9.30E-02 5.07E-03 4.40E-02 9.35E-03 2.57E-02 5.83E-03 3.97E-02 1.64E-02 1.40E-02 8.85E-03 
remanu07 2.65E-02 7.75E-03 1.01E-01 1.04E-02 6.29E-02 1.18E-02 3.51E-02 8.33E-03 4.68E-02 1.39E-02 1.18E-02 6.49E-03 
remanu08 4.01E-02 6.41E-03 1.12E-01 4.48E-03 9.41E-02 1.83E-02 5.80E-02 9.30E-03 4.92E-02 1.48E-02 1.74E-02 9.00E-03               

Spread 
instances MOEA/D MOEA/D-M2M NSGA-III MO-LR IAIS HPEA  

mean std mean std mean std mean std mean std mean std 
data1 9.25E-01 1.70E-01 9.56E-01 1.79E-01 1.03E+00 1.71E-01 1.15E+00 2.98E-01 1.17E+00 2.87E-01 8.22E-01 1.16E-01 
data2 9.81E-01 7.80E-02 9.55E-01 1.05E-01 1.06E+00 1.05E-01 1.06E+00 1.25E-01 1.01E+00 1.05E-01 9.81E-01 5.69E-02 
data3 9.02E-01 1.72E-01 9.39E-01 2.15E-01 1.09E+00 2.01E-01 1.12E+00 2.22E-01 1.09E+00 2.04E-01 9.03E-01 1.82E-01 
data4 9.72E-01 1.96E-01 1.02E+00 2.83E-01 1.12E+00 2.50E-01 1.06E+00 2.37E-01 1.04E+00 1.99E-01 9.09E-01 1.88E-01 
data5 9.90E-01 1.88E-01 9.69E-01 1.54E-01 1.07E+00 2.19E-01 1.16E+00 2.82E-01 1.06E+00 2.60E-01 8.98E-01 2.32E-01 
FMk01 7.93E-01 2.03E-01 9.53E-01 2.54E-01 9.49E-01 2.04E-01 9.51E-01 2.39E-01 1.03E+00 1.95E-01 7.10E-01 2.13E-01 
FMk02 8.63E-01 1.94E-01 9.82E-01 2.70E-01 1.06E+00 2.34E-01 1.08E+00 2.70E-01 1.00E+00 8.78E-02 8.67E-01 1.70E-01 
FMk03 9.89E-01 9.37E-02 9.42E-01 7.40E-02 9.91E-01 6.69E-02 1.01E+00 4.79E-02 1.02E+00 2.02E-01 1.11E+00 1.15E-01 
FMk04 8.83E-01 6.29E-02 9.28E-01 1.23E-01 9.97E-01 3.77E-02 9.98E-01 4.56E-02 1.14E+00 3.05E-01 8.98E-01 6.48E-02 
FMk05 8.37E-01 7.42E-02 1.09E+00 2.17E-01 9.45E-01 7.95E-02 1.02E+00 8.32E-02 1.12E+00 3.41E-01 8.35E-01 1.00E-01 
FMk06 7.77E-01 9.88E-02 8.82E-01 7.10E-02 9.86E-01 1.14E-01 9.65E-01 1.77E-01 9.92E-01 2.71E-02 7.98E-01 9.26E-02 
FMk07 7.43E-01 1.03E-01 9.62E-01 1.94E-01 9.31E-01 8.20E-02 9.65E-01 1.06E-01 1.14E+00 2.27E-01 7.28E-01 1.01E-01 
FMk08 5.50E-01 2.68E-01 1.13E+00 2.95E-01 8.54E-01 1.31E-01 8.71E-01 1.53E-01 1.05E+00 1.76E-01 4.50E-01 2.60E-01 
FMk09 8.78E-01 1.22E-01 9.77E-01 1.82E-01 1.05E+00 1.65E-01 1.00E+00 1.68E-01 1.02E+00 6.24E-02 8.84E-01 8.07E-02 
FMk10 8.73E-01 1.13E-01 9.90E-01 2.27E-01 1.01E+00 1.32E-01 9.87E-01 1.17E-01 1.00E+00 1.70E-02 8.88E-01 1.36E-01 
remanu01 9.90E-01 3.58E-01 1.13E+00 2.88E-01 1.10E+00 3.45E-01 1.14E+00 4.29E-01 1.02E+00 2.37E-01 1.04E+00 3.46E-01 
remanu02 1.02E+00 1.45E-01 1.10E+00 2.28E-01 1.05E+00 2.42E-01 1.10E+00 2.97E-01 9.74E-01 5.86E-02 9.65E-01 2.75E-01 

(continued on next page) 
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benchmarks, Fig. 8 shows the comparison of convergence curves. It is 
worth being mentioned that the initial HV value of HPEA and IAIS is 
more than 0 is because the initialization strategy in Section 4.4 
improved the convergence of the initial population. 

It can be concluded from Fig. 9 (1) the proposed HPEA algorithm 
shows better convergence. (2) the proposed initial strategy improves the 
convergence of population. (3) VNS can improve the convergence. (4) 
IAIS is unstable because when the population converges, their fitness is 
close while diversity strategy deletes those solutions and uses the rest of 
solutions to generate a new solution. That will delete the best solution 
and reduce the convergence. 

Fig. 9 shows the Pareto Front comparison results of all algorithms. 
Fig. 9 denotes that HPEA’s Pareto Front is better than other algorithms 
because of the proposed strategies such as initial strategy, VNS and 
parameter adaption. 

Fig. 10 shows a Gantt chart of solution A with the best fuzzy make
span of instance data4 f1 = (30,42,58) and f2 = (174,266,379). Fig. 11 
shows a Gantt chart of solution B with the best fuzzy total machine 
workload of instance data4 (f1 = (34,49,67)and f2 = (172,261,373)). 

6. Conclusion 

This paper proposes hybrid self-adaptive multi-objective evolu
tionary algorithm based on decomposition (HPEA) to solve multi- 
objective flexible job shop scheduling problems with fuzzy processing 
time. The objective is to minimize the fuzzy maximum completion time 
and fuzzy total machine workload. To solve multi-objective FFJSP bet
ter. An efficient initialization heuristic that combined three different 
rules is designed to generate an initial population with high convergence 

Table 5 (continued )  

HV 
instances MOEA/D MOEA/D-M2M NSGA-III MO-LR IAIS HPEA  

mean std mean std mean std mean std mean std mean std 

remanu03 9.91E-01 2.18E-02 1.04E+00 1.54E-01 1.01E+00 2.93E-02 1.02E+00 3.77E-02 1.00E+00 1.15E-03 9.95E-01 1.79E-02 
remanu04 8.63E-01 1.09E-01 9.48E-01 1.52E-01 9.91E-01 2.03E-01 1.06E+00 1.98E-01 1.00E+00 2.31E-02 8.56E-01 2.01E-01 
remanu05 9.88E-01 1.75E-02 1.01E+00 1.12E-01 9.95E-01 2.19E-02 1.01E+00 3.38E-02 1.00E+00 2.57E-03 9.90E-01 1.89E-02 
remanu06 9.67E-01 9.36E-02 9.30E-01 8.46E-02 1.02E+00 9.43E-02 1.00E+00 8.46E-02 1.01E+00 2.63E-02 1.08E+00 1.96E-01 
remanu07 9.94E-01 4.98E-02 9.67E-01 3.91E-02 9.89E-01 3.58E-02 1.01E+00 5.11E-02 1.00E+00 9.13E-03 1.02E+00 6.45E-02 
remanu08 9.86E-01 6.34E-02 1.00E+00 5.47E-02 9.93E-01 3.03E-02 9.96E-01 4.16E-02 9.95E-01 1.75E-02 1.13E+00 2.76E-01  

Fig. 8. Comparison of convergence abilities.  

Fig. 9. Pareto Front comparison results.  

Fig. 10. Gantt chart of solution A with the best Cmax in data4 instance.  

Fig. 11. Gantt chart of solution B with the best TWL in data4 instance.  
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and diversity. Five types of local search methods are fixed to present an 
efficient variable neighborhood search method to improve the conver
gence of population and help solution jump out from local optima. 
Moreover, a parameter adaption strategy is used to make the algorithm 
adjust the vital parameter automatically, which can promote diversity 
further. Finally, the proposed HPEA algorithm is compared with four 
excellent multi-objective optimization algorithms and a novel 
population-based heuristic for the considered problem. Experimental 
results show that the proposed HPEA algorithm is superior to other 
compare algorithms. Both convergence and diversity can be ensured. In 
conclusion, HPEA can be adaptive to solve multi-objective fuzzy flexible 
job shop scheduling problems under a high level of uncertainty. 

In our future work, we will consider the following tasks: (1) apply the 
HPEA in different types of realistic applications. Such as distribute flow 
shop scheduling problems and parallel machine scheduling problems 
and et al. (2) combine with reinforcement learning algorithm like Q- 
Learning to automatically choose mutation strategy to make the algo
rithm more intelligent. (3) Refer to other efficient multi-objective opti
mization algorithms such as CCMO to design a double population co- 
evolution algorithm. Each population focuses on different targets like 
convergence and diversity. (4) Consider other types of fuzzy number 
such as the type-2 fuzzy number. The proposed algorithm can adapt to 
other types of applications. 
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